Title : Pre - and post - synaptic properties of glutamatergic transmission in the immature inhibitory

نویسندگان

  • Deda C Gillespie
  • Deda Gillespie
چکیده

The lateral superior olive (LSO) integrates excitatory inputs driven by sound arriving at the ipsilateral ear with inhibitory inputs driven by sound arriving at the contralateral ear in order to compute interaural intensity differences needed for localizing high frequency sound sources. Specific mechanisms necessary for developmental refinement of the inhibitory projection, which arises from the medial nucleus of the trapezoid body (MNTB), have been only partially deciphered. The demonstration that immature MNTBLSO synapses release glutamate has led to a model in which early glutamate neurotransmission plays a major role in inhibitory plasticity. We used whole-cell electrophysiology in acute auditory brainstem slices of neonatal rats to examine glutamatergic transmission in the developing MNTB-LSO pathway. Unexpectedly, AMPA receptor (AMPAR)-mediated responses were prevalent at the earliest ages. We found a salient developmental profile for NMDA receptor (NMDAR) activation, described both by the proportion of total glutamate current and by current durations, and we found evidence for distinct release probabilities for GABA/glycine and glutamate in the MNTB-LSO pathway. The developmental profile of NMDAR is consistent with the possibility that the inhibitory MNTB-LSO pathway experiences a sensitive period, driven by cochlear activity and mediated by GluN2B-containing NMDARs, between postnatal days 3 and 9. Differing neurotransmitter release probabilities could allow the synapse to switch between GABA/glycinergic transmission and mixed glutamate/ GABA/glycinergic transmission in response to changing patterns of spiking activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capsaicin Enhances Glutamatergic Synaptic Transmission to Neonatal Rat Hypoglossal Motor Neurons via a TRPV1-Independent Mechanism

We investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaici...

متن کامل

Chronic Ethanol and Withdrawal Differentially Modulate Pre- and Post-synaptic Function at Glutamatergic Synapses in Rat Basolateral Amygdala Abbreviated Title: Ethanol and withdrawal alter BLA glutamatergic transmission

Withdrawal anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is long lasting, can manifest well after the overt physical symptoms of withdrawal, and is frequently associated with relapse in recovering alcoholics. The neurobiological mechanisms governing these withdrawal-associated increases in anxiety are currently unknown. The basolateral amygd...

متن کامل

Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices

Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011